Blood Vessels Flow-Mediated Dilation of the Radial Artery Is Offset by Flow-Induced Reduction in Transmural Pressure

نویسندگان

  • Benyu Jiang
  • Mike Seddon
  • Henry Fok
  • Ann Donald
  • Phil Chowienczyk
چکیده

Flow-mediated dilation of the brachial or radial artery in response to transient hyperaemic flow, the most widely used test of endothelial function, is only manifest after flow decays back to baseline. We examined whether this dissociation of flow and diameter might be explained by a reduction in transmural pressure generated by high flow. Studies were performed in healthy subjects 20 to 55 years of age. Flow-mediated dilation was measured in the radial artery using a standard protocol and after flow interruption at peak hyperemia during brachial artery infusion of saline and the NO synthase inhibitor N-monomethyl-L-arginine (8 mol/min). Flow interruption 20 seconds after cuff release (during high flow but no dilatation) produced an immediate increase in radial artery diameter of 5.36 2.12%, inhibited by N-monomethyl-L-arginine to 1.09 0.67% (n 8; P 0.001). Mean intra-arterial radial blood pressure and, hence, transmural pressure fell after cuff release by a mean of 26 1.8 mm Hg (n 6; P 0.0001) at the time of peak hyperemic flow. Modulation of transmural pressure within the brachial artery by cuff inflation around the artery demonstrated that this fall is sufficient to reduce arterial diameter by an amount similar to flow-mediated dilation. These results suggest that flow-dependent, NO-dependent dilation is offset by a flow-induced fall in local arterial pressure and, hence, in transmural pressure. Shear related NO release is likely to play a greater role in the short-term regulation of arterial tone than that suggested by flow-mediated dilation. (Hypertension. 2011;57:1145-1150.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow-mediated dilation of the radial artery is offset by flow-induced reduction in transmural pressure.

Flow-mediated dilation of the brachial or radial artery in response to transient hyperaemic flow, the most widely used test of endothelial function, is only manifest after flow decays back to baseline. We examined whether this dissociation of flow and diameter might be explained by a reduction in transmural pressure generated by high flow. Studies were performed in healthy subjects 20 to 55 yea...

متن کامل

Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo.

BACKGROUND Endothelial dysfunction leading to neutrophil infiltration of tissues has been implicated in tissue injury caused by ischemia-reperfusion (IR). Tissue injury during IR can be reduced by prior ischemic preconditioning (IPC). In humans, it is unclear whether endothelial dysfunction occurs during IR or whether IPC offers protection against endothelial dysfunction and inflammatory cell a...

متن کامل

Measuring the Nitroglycerine-Induced Vasodilation in Carotid Arteries

Introduction: Nitroglycerin is a fast-acting drug that rapidly dilates coronary arteries and thus increases blood flow to these vessels, and increases the blood flow through the lateral vessels to low blood areas. It also reduces both end diastolic pressure and volume of the left ventricular. However, the effect of nitroglycerin on the circulation hemodynamic is not known. Caro...

متن کامل

Effect of Angiotensin II on Blood Flow in Acute and Chronically Inflamed Knee Joints of Rabbits: The Role of Nitric Oxide

Background: Angiotensin converting enzyme (ACE) upregulation in stromal cells of joints affected by rheumatoid arthritis may lead to higher tissue angiotensin II that is a vasoconstrictor and mitogen factor. To date, the role of angiotensin II on regulating blood flow in inflamed joints has not been studied. Methods: Acute and chronic joint inflammation was induced in rabbits by intra-articular...

متن کامل

A Mathematical Model for Blood Flow Through Narrow Vessels with Mild-Stenosis (RESEARCH NOTE)

In this paper we examine the effect of mild stenosis on blood flow, in an irregular axisymmetric artery with oscillating pressure gradient. The Herschel-Bulkley fluid model has been utilized for this study. The combined influence of an asymmetric shape and surface irregularities of constriction has been explored in this computational study. An extensive quantitative analysis has been performed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011